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It is shown by numerical calculations that in extended thermodynamics of 13, 14, 20, and 21 moments a
continuous shock structure exists up to a critical Mach number. The critical Mach number increases by
increasing the number of moments; the value runs from 1.65 for 13 moments up to 1.887 for 21 moments.

PACS number(s): 47.40.Nm, 05.70.Ln

L. INTRODUCTION

The shock structure in monatomic gases is not satisfacto-
rily described by the Navier-Stokes-Fourier theory, e.g., see
[1]. But Grad’s 13-moment theory is even worse; indeed,
Grad [2,3] himself found that no continuous shock structure
exists beyond Mach 1.65, which is the maximum speed of
propagation of the 13-moment theory. Several methods exist
to increase this Mach number [4,5].

We have always thought that the proper manner to im-
prove on the calculation of the shock structure should pro-
ceed by taking more and more moments into account. Ex-
tended thermodynamics provides hyperbolic systems at
every stage—so that there is always a maximum speed of
propagation—but that speed increases with the number of
moments. Thus the proposition is that with more and more
moments the shock structure may be improved up to higher
and higher Mach numbers.

This proposition became doubtful when Ruggeri [6] ar-
gued that each characteristic speed of the hyperbolic
system—not only the maximum speed—produces a singular-
ity. By this argument the higher moment theories should per-
mit a smooth shock structure only for Mach numbers slightly
above M =1. Therefore, Ruggeri’s argument posed a di-
lemma; it cast doubt on the kinetic theory, and in particular,
on the method of moments for calculation of shocks. This
situation has motivated our study and in the present paper we
remove this doubt. It is true that the shock structure becomes
singular at every characteristic speed; but our numerical cal-
culations with 14, 20, and 21 moments show that these sin-
gularities are regular, so that the shock structure is smooth
until, of course, we reach the maximum speed. Between 13
and 21 moments that maximum speed rises from M =1.65 to
M=1.887.

In a forthcoming paper higher-moment theories will be
investigated in the attempt to obtain quantitatively correct
shock structures.

II. EXTENDED THERMODYNAMICS

Extended thermodynamics can be based on the kinetic
theory of monatomic ideal gases. The set of variables is de-
fined by moments of the distribution function f. The equa-
tions of transfer for those moments are developed from the
Boltzmann equation and the closure problem is solved by
maximizing the entropy [7,8]. The first 13 variables have an
easy physical interpretation. These are the density p, velocity
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v;, temperature T, pressure deviator p;; (where the angular
brackets denote the symmetric traceless part), and the heat
flux g;. Here, the linearized equations that follow from the
entropy maximization are equivalent to Grad’s 13-moment
theory [3,8]. If we add to the first 13 variables the full trace-
less part m ;;y, of the third moment (7 components) and the
nonequilibrium part A of the full trace of the fourth moment,
we get a system with 21 moments. If we consider a steady
state problem in which all variables depend only on one
space dimension x, this system reduces to seven equations.
With o for p(yy, g for g, and m for myy;y, we have
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R denotes the gas constant and « is a constant that follows
by calculation of the collision production for Maxwell mol-
ecules. The first three equations are the equations of balance
for the conserved quantities mass, momentum, and energy. If
we neglect the last equation (7) and set A=0, we get six
equations, which represent the stationary one-dimensional
case of extended thermodynamics with 20 variables. Ne-
glecting Eq. (6) and setting m=0, we get the 14-moment
theory. Neglecting Eqs. (6) and (7) and setting m =0 and
A =0, we get Grad’s 13-moment theory.

The necessary number of variables depends on the con-
sidered experiment. A satisfactory description of experiments
of light scattering and dispersion relation of sound waves
needs hundreds of variables [8,9] under certain circum-
stances.

III. SINGULAR POINTS IN A STEADY STATE
SHOCK STRUCTURE

For simplicity we consider a steady state shock. At point
Xxq, very far before the shock, we have the equilibrium state
Po> Vo, Ty and on the other side, very far behind the shock
at point x,, we have the equilibrium state p;, v, T;. All
other quantities o, g, m, and A are zero at both points. The
adiabatic speed of sound at the points x, and x, is given by
ay=+(5/3)RT, and a,;=/(5/3)RT,, respectively. We intro-
duce the Mach number at xy by Mg=vg/ay. The integration
of Egs. (1)—(3) between xq and x; leads to the Rankine-
Hugoniot-relations
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The shock structure between the points x and x; can now be
calculated by one of the systems above, with 13, 14, 20, or
21 moments. Let u denote the vector of wvariables
u={p,v,T,0,q, ...}, then all systems may be written in the
form

=r(u). (10)

f(u) denotes the fluxes and r(u) denotes the right hand sides
of the system (1)—(7). Differentiating the fluxes with respect
to u and introducing the matrix A(u)=Jdf(u)/du we get

d
A(u)- E:;:r(u). (11)

This is a linear system for the vector of derivatives du/dx.
The solution of the system depends strongly on the structure
of A(u) and r(u). At the points xq and x; the productions
r(u) vanish, but between x; and x; they do not vanish in
general. Therefore the system (11) is inhomogenous in gen-
eral and there is a problem, if the determinant of A(u) van-
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ishes. By Cramer’s rule the system (11) may be solved for
the vector of derivatives. The solution may be represented
schematically as

du_z 12
dx D’ (12)
D is the determinant of A and the kth component of z is a
determinant obtained from A by replacing its kth column by
r.

At the points x and x; the determinant D of A(u) is zero,
if the velocity v is equal to a characteristic velocity ¢. For
example, in the 14-moment case we have

c{P'=0.900a,
Do=det{A(ug)}=0 ifvy= 13
0 {A(u)} Vo C(()2)=1.763a0, (13)
¢{V=0.900a,
D,=det{A(u,)}=0 ifv;= 14
1= det{A(n)} Y eP=1.763a,. )

We see that at x, we get a problem, if M, is equal to 0.9 or
1.763. Now we look behind the shock, at the point x;. By
(9) we may write a relation between the characteristic veloci-
ties at xq and x,
SMy+14MG—3)\ "2
c1= e Co (15)

We ask for the Mach number M, at which at the point x; the
velocity v, equals a characteristic velocity c;. We set c;
equal to v, which is given by (8b), and get

12
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For the two characteristic velocities (13) in the 14-moment
case we get M(=0.648 and M,=1.117. At these two Mach
numbers the velocity v, is equal to c{") or ¢{?. If we in-
crease the Mach number, starting at My=1, we see that in
the 14-moment theory the problem det(A)=0 occurs first at
My=1.117 at the point x;. Inspection of the determinants
shows, that for M, not much above 1.117, D, is negative and
D, is positive. Therefore the point at which the determinant
D vanishes moves from point x;—where it is located for
M (,=1.117—in the direction of x, when M, is increased. We
conclude: in the 14-moment theory we have a singular point
at xo<x<x, for My>1.117. For M ;=1.763 we get a second
singular point at x,. Increasing the Mach number, this sec-
ond singularity moves from x; in the direction of x;. But
there is a significant difference between these two singular
points. By the numerical calculations below, we see that the
singularity starting at My=1.117 is a regular singular point,
so that the numerator z in (12) also vanishes. The singularity
arising at M y=1.763 is a regular singular point, but for M a
little bit greater than 1.763 this point moves into the shock
and becomes an irregular singular point, in which z does not
vanish. We have r#0, z#0, and D =0, hence the derivatives
go to infinity. Therefore, a continuous shock structure exists
up to the critical Mach number M=1.763.
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TABLE I. Mach numbers for Dy=0 and D;=0. 1
Moments Dy=0, for D,=0, for 0.75 D
0.629 0.673 0.5
B MO:[l 650 Mo= [ 1.859 0.25 y %
_[0.648 o Zr
14 [1763 M"_[1.117 N _—
0.574 0.639 025
20 [ 0.774 M= [ 1.341 -0.5
1.808 2.260 -0.75
0.644 0.624 105 110 :2 115 120 125
21 1.010 My=4 0.989 . . .
[ 1.887 { 1.780 FIG. 2. Main determinant and numerators in the 14-moment

The number of characteristic velocities and the value of
the Mach numbers at which Dy and D, vanish may be read
off from Table I for several theories.

IV. NUMERICAL CALCULATION OF
THE SHOCK STRUCTURE

Usually the problem is solved as an initial value problem
[1,4]. But this procedure leads to difficulties at the regular
singular points. Therefore, we consider the problem as a
bounaary value problem. The numerical scheme is based on
the system (10). The derivative of f with respect to x is
approximated by central differences. This system is written
down for discrete points x’ with x,<x’<x,. This leads to a
nonlinear algebraic system for the variables u(x’), which can
be solved if the boundary values at the finite points x, and
x1 are known. The Rankine-Hugoniot relations connect the
values u at infinity far before and at infinity far behind the
shock. If the interval x;—x, is chosen large enough, the
deviation of u at the points xy and x; from the Rankine-
Hugoniot values is lower than the chosen precision 10~ of
the solver for the nonlinear system. This is proved by varia-
tion of the interval x;—x,. Therefore, we can take the
Rankine-Hugoniot values as the necessary boundary values
at xg and x;. We introduce dimensionless variables by
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FIG. 1. Shock structure in the 14-moment theory for My=1.5.

theory for My=1.5.
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From (1), (2), and (3) and the Rankine-Hugoniot relations we
may derive equations for p, &, and g:

Mo 5 T
pP=— =M0 '3—(MO_U)‘—T +1, (19)
v v
~ MO 5 A\2 A ~
G=="1 S(My=0)?=3T+5} 0. (20)

We start with the 13-moment theory. By elimination of p,
o, and ¢ with (19) and (20) we obtain a system for the
variables w={0,7T}. The numerical solution of this system
leads to the well known [4,5] continuous shock structure up
to M(=1.65. Then an irregular singular point occurs at xq
and no continuous shock exists for M,>1.65. There is no
other singularity for 1<M;<1.65 in the 13-moment theory.

Next we consider the 14-moment theory. With (19) and
(20) the vector of the variables is u={0,T,A}. The numerical
solution of this system, in the form of (10), for My=1.5 is
shown in Fig. 1. If we write down the system in the form
(12), then the numerator contains three elements:
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FIG. 3. Velocity in the 21-moment theory.
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FIG. 4. Main determinant and numerators in the 21-moment
theory for My=1.4.

z={z,,z7,z5}. These three modified determinants and the
main determinant D are shown in Fig. 2. We see that at the
point x=110.05 at which the determinant D vanishes all nu-
merators vanish as well. The numerical calculations show
that this is always the case for M;<<1.763. For M,>1.763
no continuous shock structure exists.

In the 20-moment theory we have u={¢,7,/m}. The nu-
merical solutions are qualitatively the same as in the 14-
moment theory. A regular singular point arises for
My>1.341, starting at x;. For M (y>1.808 an irregular sin-
gular point arises, starting at x,. Therefore a continuous
shock structure exists for M <<1.808.

Finally we consider the 21-moment theory. The vector of
the variables is given by u={0,7,/,A}. A singularity arises
at the first time at M y=1.01 at the point x before the shock.
For My=1.4 the singularity has moved into the shock and
can be found at x=117.63. The singularity is regular and the
continuous shock structure is shown in Fig. 3. In Fig. 4 we
see that all numerators vanish when the main determinant
vanishes. For M ;=1.78 a second regular singularity arises at
x,behind the shock. For M,=1.8 this singular point has
moved into the shock and can be found at x=114.6. The
singularity that comes from the point x, is now at x

FIG. 5. Main determinant and numerators in the 21-moment
theory for My=1.8.

=107.25. The continuous shock structure for My=1.8 is also
shown in Fig. 3. In Fig. 5 we can see that at both singular
points all determinants vanish. If M equals 1.887, an irregu-
lar singular point arises at x, and no continuous shock struc-
ture exists. Therefore a continuous shock structure exists for
M(<<1.808.

V. CONCLUSIONS

The numerical calculations for extended thermodynamics
of 13, 14, 20, and 21 moments have shown that in all theo-
ries a continuous shock structure exists up to the biggest
characteristic velocity at x, in front of the shock. All singular
points that arise before the biggest characteristic velocity is
reached are regular singularities. This observation has a
simple physical interpretation. If the velocity of the gas in
front of the shock is higher than the biggest characteristic
velocity, no signal can reach the shock and therefore no con-
tinuous shock is possible. In extended thermodynamics the
biggest characteristic velocity increases by increasing the
number of moments [8]. Therefore, it should be possible to
calculate continuous shock structures for high Mach num-
bers.
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